If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+26x+44=0
a = 3; b = 26; c = +44;
Δ = b2-4ac
Δ = 262-4·3·44
Δ = 148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{148}=\sqrt{4*37}=\sqrt{4}*\sqrt{37}=2\sqrt{37}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2\sqrt{37}}{2*3}=\frac{-26-2\sqrt{37}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2\sqrt{37}}{2*3}=\frac{-26+2\sqrt{37}}{6} $
| 5x-5=2x-4=3 | | 87x^2+435x=0 | | 5x+5x-1=150 | | X^4-9x+10=0 | | 5^(x)+10^(3x-1)=0 | | 15.96+0.06(x+3)=16.71-0.15x | | 5t^2+15t+7=0 | | x+2x-3x+4x-5x+6x-7x+8x-9x+10x-11x+12x-13x+14x-15x+16x-17x+18x-19x+20x-21x+22x-23x+24x-25x+26x=0 | | 18x+6=120 | | 5x+9=15x-22 | | 7.5+x=6 | | 8(m+5)-2m=5m+6m+40 | | 4k+2=3k+8-k | | 3^x=62 | | 14.2*n=142 | | 4^(2x)+4^(x+1)=3 | | 4x+26=13x-37 | | 0.5x=0.06 | | 10x-4x+112=10x48 | | 15.01+0.08(x+3)=15.51-0.16x | | 200x-75x+57600=61200-175x | | 5.1x+7=1.1x+23 | | 2^2x+3=90 | | 7(5x+3)=2(5x+34) | | 3m+13=5m+1 | | 2x+40(3x-5)=180 | | -2x+2=-1x+3 | | 8x-4=180.7x+4=180.x | | (3x+1)-3=21 | | 8=-12b | | 8x=+17=65 | | 5m=1=46 |